Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 201: 107877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37473675

RESUMO

'Corbarino' (COR) and 'Lucariello' (LUC) belong to the family of Mediterranean long shelf-life tomato landraces, producing high quality fruits under low water input cultivation regime in their traditional cultivation area. Understanding the morpho-physiological and molecular details of the peculiar drought stress tolerance of these two genotypes may be key to their valorization as breeding material. RNA sequencing of leaf samples of COR and LUC subjected to drought stress by water withholding in a semi-controlled greenhouse identified 3089 and 2135 differentially expressed genes respectively. These included COR- and LUC-specific annotated genes, as well as genes containing single nucleotide polymorphisms as compared to reference genome. Enriched Gene Ontology categories showed that categories such as response to water, oxidoreductase activity, nucleotide salvation and lipid biosynthesis-related processes were enriched among up-regulated DEGs. By contrast, growth and photosynthesis related genes were down-regulated after drought stress, consistent with leaf gas exchange and biomass accumulation measurements. Genes encoding cell wall degrading enzymes of the pectinase family were also down-regulated in drought stress conditions and upregulated in rewatering, indicating that cell wall composition/hardness is important for drought stress responses. Globally our results contribute to understanding the transcriptomic and physiological responses of representative tomato genotypes from Southern Italy, highlighting a promising set of genes to be investigated to improve tomato tolerance to drought.


Assuntos
Solanum lycopersicum , Água , Água/metabolismo , Transcriptoma/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111953

RESUMO

Recent developments in low-cost imaging hyperspectral cameras have opened up new possibilities for high-throughput phenotyping (HTP), allowing for high-resolution spectral data to be obtained in the visible and near-infrared spectral range. This study presents, for the first time, the integration of a low-cost hyperspectral camera Senop HSC-2 into an HTP platform to evaluate the drought stress resistance and physiological response of four tomato genotypes (770P, 990P, Red Setter and Torremaggiore) during two cycles of well-watered and deficit irrigation. Over 120 gigabytes of hyperspectral data were collected, and an innovative segmentation method able to reduce the hyperspectral dataset by 85.5% was developed and applied. A hyperspectral index (H-index) based on the red-edge slope was selected, and its ability to discriminate stress conditions was compared with three optical indices (OIs) obtained by the HTP platform. The analysis of variance (ANOVA) applied to the OIs and H-index revealed the better capacity of the H-index to describe the dynamic of drought stress trend compared to OIs, especially in the first stress and recovery phases. Selected OIs were instead capable of describing structural changes during plant growth. Finally, the OIs and H-index results have revealed a higher susceptibility to drought stress in 770P and 990P than Red Setter and Torremaggiore genotypes.

3.
Front Plant Sci ; 13: 974048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507383

RESUMO

Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.

4.
Sci Total Environ ; 799: 149446, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426322

RESUMO

The wine industry has faced two significant environmental problems in recent years: productivity is challenged by environmental trends such as global warming, and buyers are becoming more environmentally conscious. From an environmental standpoint, the food industry is one of the most impacting sectors and wine results as one of the most studied agri-food products in the scientific literature. In general, comprehensive studies that consider an application of set of indicators to evaluate the overall sustainability of wine sector are lacking in literature. This paper aims to carry out a sustainable assessment using different indicators for fifteen Italian red wines: Water Footprint (WF), Carbon Footprint (CF), Vineyard Indicator (VI), and Territory Indicator (TI). VI is an indicator of the vineyard's agronomic management's sustainability at plot level with values ranging from 0 (fully sustainable) to 1 (fully not sustainable), while TI covers the socio-economical aspects of sustainability. Considering system boundaries from cradle to grave, at 90% confidence interval, CF results ranged between 0.97 kg CO2 eq./functional unit and 1.97 kg CO2 eq./functional unit, with an average estimated at 1.47 kg CO2 eq./functional unit, while the WF of a 0.75 L bottle of wine from cradle to gate is 666.7 L/functional unit on average, out of which 86.75% is green, 1.92% is blue and 11.34% is grey water. Concerning the VI, at 90% confidence interval VI results were between 0.117 and 0.498 with an average estimated at 0.307. The results of the correlation analyses confirmed that each indicator is not statistically correlated with each other. Concerning the sub-indicators, a positive correlation has been found between the total CF and the sum of blue and grey WF. The application of a multi-criteria analysis for sustainability performances evaluation of the wine sector presented in this study can be used by wine companies' experts to better assess sustainability performances.


Assuntos
Vinho , Pegada de Carbono , Fazendas , Indústria Alimentícia , Itália , Vinho/análise
5.
Sci Total Environ ; 779: 146416, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743458

RESUMO

The interest in sustainability, within the wine sector, is growing simultaneously with the awareness of the environmental impacts on climate change generated by the sector itself. In this context, environmental methodologies need to be applied: Carbon Footprint of a Product (CFP) is a quantitative expression of Greenhouse Gases (GHGs) emissions that plays an influent role in emission management and evaluation of mitigation measures over the full life cycle of a product. Moreover, CFP application in the agri-food sector remains scarce due to complex, expensive, and difficult data collection. This paper aims to determine the main factors that contribute to the CFP of 33 Italian wines from 16 wineries and compare and evaluate the results obtained using all the inventory data or results obtained using a simplified model with fewer inputs. The results per Function Unit (0.75/ L of wine) have been obtained using a unique methodology. Considering system boundaries from cradle to grave, at 90% confidence interval, CFP results ranged between 0.899 kg CO2 eq./FU and 1.882 kg CO2 eq./FU. The study underlines that most of the impacts can be related to few inventory data, in fact the main contributors of GHGs emissions are: glass bottle (29%), electricity used in the winery stage (14%), transport and distribution of the final product (13%), heat used in the winery phase (9%) and fossil fuels used in vineyard (8%). The results can be helpful to support the development of a simplified CFP and to obtain a benchmark for the CFP of the Italian wine sector. Furthermore, the present study can help businesses, policy makers and consumers in making decisions that lead to a better environmental outcome.

6.
Biochem Soc Trans ; 48(5): 2117-2126, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32869832

RESUMO

Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Mutação , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Estresse Fisiológico/fisiologia , Temperatura
7.
Antioxidants (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604812

RESUMO

Bioactive compounds of different Campania native sweet pepper varieties were evaluated. Polyphenols ranged between 1.37 mmol g-1 and 3.42 mmol g-1, ß-carotene was abundant in the red variety "Cazzone" (7.05 µg g-1). Yellow and red varieties showed a content of ascorbic acid not inferior to 0.82 mg g-1, while in some green varieties the presence of ascorbic acid was almost inconsistent. Interrelationships between the parameters analyzed and the varieties showed that ascorbic acid could represent the factor mostly influencing the antioxidant activity. Polyphenol profile was different among the varieties, with a general prevalence of acidic phenols in yellow varieties and of flavonoids in red varieties. Principal Component Analysis, applied to ascorbic acid, total polyphenols and ß-carotene, revealed that two of the green varieties ("Friariello napoletano" and "Friariello Sigaretta") were well clustered and that the yellow variety "Corno di capra" showed similarity with the green varieties, in particular with "Friariello Nocerese". This was confirmed by the interrelationships applied to polyphenol composition, which let us to light on a clustering of several red and yellow varieties, and that mainly the yellow "Corno di capra" was closer to the green varieties of "Friariello".

8.
Plants (Basel) ; 9(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630481

RESUMO

Salt stress is one of the most impactful abiotic stresses that plants must cope with. Plants' ability to tolerate salt stress relies on multiple mechanisms, which are associated with biomass and yield reductions. Sweet pepper is a salt-sensitive crop that in Mediterranean regions can be exposed to salt build-up in the root zone due to irrigation. Understanding the physiological mechanisms that plants activate to adapt to soil salinization is essential to develop breeding programs and agricultural practices that counteract this phenomenon and ultimately minimize yield reductions. With this aim, the physiological and productive performances of Quadrato D'Asti, a common commercial sweet pepper cultivar in Italy, and Cazzone Giallo, a landrace of the Campania region (Italy), were compared under different salt stress treatments. Quadrato D'Asti had higher tolerance to salt stress when compared to Cazzone Giallo in terms of yield, which was associated with higher leaf biomass vs. fruit ratio in the former. Ion accumulation and profiling between the two genoptypes revealed that Quadrato D'Asti was more efficient at excluding chloride from green tissues, allowing the maintenance of photosystem functionality under stress. In contrast, Cazzone Giallo seemed to compartmentalize most sodium in the stem. While sodium accumulation in the stems has been shown to protect shoots from sodium toxicity, in pepper and/or in the specific experimental conditions imposed, this strategy was less efficient than chloride exclusion for salt stress tolerance.

9.
Plant Physiol ; 183(2): 793-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32123040

RESUMO

RNA splicing is a fundamental mechanism contributing to the definition of the cellular protein population in any given environmental condition. DNA-DAMAGE REPAIR/TOLERATION PROTEIN111 (DRT111)/SPLICING FACTOR FOR PHYTOCHROME SIGNALING is a splicing factor previously shown to interact with phytochrome B and characterized for its role in splicing of pre-mRNAs involved in photomorphogenesis. Here, we show that DRT111 interacts with Arabidopsis (Arabidopsis thaliana) Splicing Factor1, involved in 3' splicing site recognition. Double- and triple-mutant analysis shows that DRT111 controls splicing of ABI3 and acts upstream of the splicing factor SUPPRESSOR OF ABI3-ABI5. DRT111 is highly expressed in seeds and stomata of Arabidopsis and is induced by long-term treatments of polyethylene glycol and abscisic acid (ABA). DRT111 knock-out mutants are defective in ABA-induced stomatal closure and are hypersensitive to ABA during seed germination. Conversely, DRT111 overexpressing plants show ABA-hyposensitive seed germination. RNA-sequencing experiments show that in dry seeds, DRT111 controls expression and splicing of genes involved in osmotic-stress and ABA responses, light signaling, and mRNA splicing, including targets of ABSCISIC ACID INSENSITIVE3 (ABI3) and PHYTOCHROME INTERACTING FACTORs (PIFs). Consistently, expression of the germination inhibitor SOMNUS, induced by ABI3 and PIF1, is upregulated in imbibed seeds of drt111-2 mutants. Together, these results indicate that DRT111 controls sensitivity to ABA during seed development, germination, and stomatal movements, and integrates ABA- and light-regulated pathways to control seed germination.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , DNA Ligases/metabolismo , Germinação/fisiologia , Fatores de Processamento de RNA/metabolismo , Sementes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Ligases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Fatores de Processamento de RNA/genética , Sementes/efeitos dos fármacos , Sementes/genética
10.
Front Plant Sci ; 10: 304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941154

RESUMO

Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding.

11.
Plant Signal Behav ; 13(12): e1537698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458658

RESUMO

Environmental conditions inform the rate of plant growth and development. The target of rapamycin (TOR) signalling pathway is a central regulator of plant growth in response to nutrients and energy, while abscisic acid (ABA) is a main mediator of abiotic stress responses. We recently characterized Arabidopsis TIP41, a predicted TOR pathway component involved in the ABA-mediated response to abiotic stress. Here, we report the ABA sensitivity of tip41 mutants, supporting the relation between TIP41 and the hormone pathway. The analysis of predicted TIP41 functional network identified several protein phosphatases. In particular, candidate protein interactors included catalytic subunits of type 2A protein phosphatases and protein phosphatases 6, which regulate different developmental processes and responses to environmental stimuli. These results provide important information on the role of TIP41 in the cross talk between TOR and ABA pathways.

12.
PLoS One ; 13(7): e0201027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024987

RESUMO

Constant global warming is one of the most detrimental environmental factors for agriculture causing significant losses in productivity as heat stress (HS) conditions damage plant growth and reproduction. In flowering plants such as tomato, HS has drastic repercussions on development and functionality of male reproductive organs and pollen. Response mechanisms to HS in tomato anthers and pollen have been widely investigated by transcriptomics; on the contrary, exhaustive proteomic evidences are still lacking. In this context, a differential proteomic study was performed on tomato anthers collected from two genotypes (thermo-tolerant and thermo-sensitive) to explore stress response mechanisms and identify proteins possibly associated to thermo-tolerance. Results showed that HS mainly affected energy and amino acid metabolism and nitrogen assimilation and modulated the expression of proteins involved in assuring protein quality and ROS detoxification. Moreover, proteins potentially associated to thermo-tolerant features, such as glutamine synthetase, S-adenosylmethionine synthase and polyphenol oxidase, were identified.


Assuntos
Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum lycopersicum/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Pólen/metabolismo
13.
Planta ; 248(2): 465-476, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777363

RESUMO

MAIN CONCLUSION: Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins. The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25-30 mg of pure protein/plant.


Assuntos
Nicotiana/metabolismo , Edulcorantes/metabolismo , Cloroplastos/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas Mutantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Edulcorantes/isolamento & purificação , Paladar , Nicotiana/genética , Transformação Genética
14.
Plant J ; 94(6): 991-1009, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602224

RESUMO

Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Alinhamento de Sequência
15.
DNA Res ; 25(2): 149-160, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149280

RESUMO

Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.


Assuntos
Frutas/genética , Genoma de Planta , Polimorfismo Genético , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Genes de Plantas , Genômica
16.
Plant Physiol Biochem ; 118: 150-160, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633087

RESUMO

The involvement and the efficiency of the antioxidants scavenging system upon drought were examined by comparing traditional tomato landraces with respect to an industrial commercial genotype (Red Setter); for the first time, comprehensive analyses of physiological, biochemical and molecular parameters were investigated directly under real field conditions, in a typical agricultural environment of Southern Italy. The characterization of the responses upon drought evidenced peculiar changes in stomatal conductance, ascorbate peroxidase and catalase activities and expression in drought tolerant tomato landraces, with respect to the industrial genotype. An in silico analysis (promoter and co-expression study) coupled to a phylogenetic investigation of selected enzymes was performed, reinforcing the hypothesis of a basal activation of ROS scavenging machinery in the Mediterranean landraces. Thus our data suggest a constitutive increase in the expression and activities of specific enzymes involved in ROS detoxification that can play a pivotal role in the drought response shown by tomato landraces. Therefore, traditional landraces could represent an important source of useful genetic variability for the improvement of commercial varieties; their ROS detoxifying capabilities denote peculiar aspects worth being explored to better describe their specific stress tolerance.


Assuntos
Produção Agrícola , Desidratação/metabolismo , Sequestradores de Radicais Livres/metabolismo , Modelos Biológicos , Solanum lycopersicum/crescimento & desenvolvimento , Estresse Fisiológico , Itália
17.
BMC Plant Biol ; 17(1): 40, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183294

RESUMO

BACKGROUND: Drought is a major constraint for plant growth and crop productivity that is receiving an increased attention due to global climate changes. Chloroplasts act as environmental sensors, however, only partial information is available on stress-induced mechanisms within plastids. Here, we investigated the chloroplast response to a severe drought treatment and a subsequent recovery cycle in tomato through physiological, metabolite and proteomic analyses. RESULTS: Under stress conditions, tomato plants showed stunted growth, and elevated levels of proline, abscisic acid (ABA) and late embryogenesis abundant gene transcript. Proteomics revealed that water deficit deeply affects chloroplast protein repertoire (31 differentially represented components), mainly involving energy-related functional species. Following the rewatering cycle, physiological parameters and metabolite levels indicated a recovery of tomato plant functions, while proteomics revealed a still ongoing adjustment of the chloroplast protein repertoire, which was even wider than during the drought phase (54 components differentially represented). Changes in gene expression of candidate genes and accumulation of ABA suggested the activation under stress of a specific chloroplast-to-nucleus (retrograde) signaling pathway and interconnection with the ABA-dependent network. CONCLUSIONS: Our results give an original overview on the role of chloroplast as enviromental sensor by both coordinating the expression of nuclear-encoded plastid-localised proteins and mediating plant stress response. Although our data suggest the activation of a specific retrograde signaling pathway and interconnection with ABA signaling network in tomato, the involvement and fine regulation of such pathway need to be further investigated through the development and characterization of ad hoc designed plant mutants.


Assuntos
Cloroplastos/metabolismo , Secas , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
18.
Gene ; 597: 30-39, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27771448

RESUMO

Water-limiting conditions affect dramatically plant growth and development and, ultimately, yield of potato plants (Solanum tuberosum L.). Therefore, understanding the mechanisms underlying the response to water deficit is of paramount interest to obtain drought tolerant potato varieties. Herein, potato 10K cDNA array slides were used to profile transcriptomic changes of two potato cell populations under abrupt (shocked cells) or gradual exposure (adapted cells) to polyethylene glycol (PEG)-mediated water stress. Data analysis identified >1000 differentially expressed genes (DEGs) in our experimental conditions. Noteworthy, our microarray study also suggests that distinct gene networks underlie the cellular response to shock or gradual water stress. On the basis of our experimental findings, it is possible to speculate that DEGs identified in shocked cells participate in early protective and sensing mechanisms to environmental insults, while the genes whose expression was modulated in adapted cells are directly involved in the acquisition of a new cellular homeostasis to cope with water stress conditions. To validate microarray data obtained for potato cells, the expression analysis of 21 selected genes of interest was performed by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Intriguingly, the expression levels of these transcripts in 4-week old potato plants exposed to long-term water-deficit. qRT-PCR analysis showed that several genes were regulated similarly in potato cells cultures and tissues exposed to drought, thus confirming the efficacy of our simple experimental system to capture important genes involved in osmotic stress response. Highlighting the differences in gene expression between shock-like and adaptive response, our findings could contribute to the discussion on the biological function of distinct gene networks involved in the response to abrupt and gradual adaptation to water deficit.


Assuntos
Desidratação/genética , Redes Reguladoras de Genes , Solanum tuberosum/fisiologia , Adaptação Fisiológica/genética , Células Cultivadas , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Solanum tuberosum/citologia , Solanum tuberosum/genética , Transcriptoma
19.
Plant Physiol Biochem ; 105: 79-89, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27085599

RESUMO

The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity.


Assuntos
Secas , Glucosefosfato Desidrogenase/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosefosfato Desidrogenase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Fatores de Tempo
20.
Front Plant Sci ; 7: 371, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066027

RESUMO

Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...